dinsdag 31 juli 2012

Motion correspondence in the Ternus display shows feature bias in spatiotopi...

 
 

Sent to you by Frouke via Google Reader:

 
 

via Journal of Vision recent issues by Hein, E., Cavanagh, P. on 7/30/12

AbstractHow is the visual system able to maintain object identity as the objects or the eyes move? While many early studies have shown small or no influence of feature information on this correspondence process, more recent studies have shown large feature effects. Here we investigated if this incongruity might be due to the distance over which the feature influence has an effect. We used a variation of the Ternus display (Ternus, 1926), an ambiguous apparent motion display, in which two sets of three discs are presented and one can perceive either three discs moving together (group motion) or one disc jumping across the other two discs (element motion). We biased the percept toward element motion by matching the features of some of the discs. In Experiment 1, with the three discs aligned and moving vertically, we added a horizontal offset between the two sets of discs and found a strong bias toward element motion that decreased with increasing spatial offset. In Experiment 3 participants had to make horizontal saccades across the same Ternus displays so that the two Ternus frames were horizontally offset on the retina, but not in spatiotopic coordinates. We found that the bias showed a similar spatial range, but now it was clear that the range was set in spatial coordinates independently of the retinal position. These results show that feature information contributes to correspondence over a limited spatial range (Experiment 1) and that the range is imposed in spatial, not retinal, coordinates (Experiment 2).

 
 

Things you can do from here:

 
 

woensdag 18 juli 2012

How Academics Face the World: A Study of 5829 Homepage Pictures

Quote of the day: Psychologists appear more like art academics than scientists".

 

[via RSS feed PLoS ONE alert: Neuroscience] (yep, neuroscience)

 

by Owen Churches, Rebecca Callahan, Dana Michalski, Nicola Brewer, Emma Turner, Hannah Amy Diane Keage, Nicole Annette Thomas, Mike Elmo Richard Nicholls

It is now standard practice, at Universities around the world, for academics to place pictures of themselves on a personal profile page maintained as part of their University's web-site. Here we investigated what these pictures reveal about the way academics see themselves. Since there is an asymmetry in the degree to which emotional information is conveyed by the face, with the left side being more expressive than the right, we hypothesised that academics in the sciences would seek to pose as non-emotional rationalists and put their right cheek forward, while academics in the arts would express their emotionality and pose with the left cheek forward. We sourced 5829 pictures of academics from their University websites and found that, consistent with the hypotheses, there was a significant difference in the direction of face posing between science academics and English academics with English academics showing a more leftward orientation. Academics in the Fine Arts and Performing Arts however, did not show the expected left cheek forward bias. We also analysed profile pictures of psychology academics and found a greater bias toward presenting the left check compared to science academics which makes psychologists appear more like arts academics than scientists. These findings indicate that the personal website pictures of academics mirror the cultural perceptions of emotional expressiveness across disciplines.


Artikel weergeven...

dinsdag 17 juli 2012

The role of crowding in contextual influences on contour integration

 
 

Sent to you by Frouke via Google Reader:

 
 

via Journal of Vision recent issues by Robol, V., Casco, C., Dakin, S. C. on 7/9/12

Abstract Dakin and Baruch (2009) investigated how context influences contour integration, specifically reporting that near-perpendicular surrounding-elements reduced the exposure-duration observers required to localize and determine the shape of contours (compared to performance with randomly oriented surrounds) while near-parallel surrounds increased this time. Here, we ask if this effect might be a manifestation of visual crowding (the disruptive influence of "visual clutter" on object recognition). We first report that the effect generalizes to simple contour-localization (without explicit shape-discrimination) and influences tolerance to orientation jitter in the same way it affects threshold exposure-duration. We next directly examined the role of crowding by quantifying observers' local uncertainty (about the orientation of the elements that comprised our contours), showing that this largely accounts for the effects of context on global contour integration. These findings support the idea that context influences contour integration at a predominantly local stage of processing and that the local effects of crowding eventually influence downstream stages in the cortical processing of visual form.

 
 

Things you can do from here:

 
 

dinsdag 3 juli 2012

G r e a t e r / l e t t e r / s p a c i n g / helps reading in dyslexia

On crowding and dyslexia
 
G r e a t e r / l e t t e r / s p a c i n g / helps reading in dyslexia
Published on The Neurocritic | shared via feedly


Simply increasing the spacing between letters improves the reading ability of children with developmental dyslexia, according to a group of Italian and French researchers (Zorzi et al., 2012). Dyslexic children were 20% faster and twice as accurate when reading the altered text. This impressive result was obtained without any prior training whatsoever.

The study was based on the phenomenon of crowding, where the recognition of individual letters is impaired by the close proximity of surrounding letters. Children with dyslexia are disproportionately affected by crowding, compared to normally developing children (Martelli et al., 2009). Other aspects of the printed word are known to affect reading ability, but surprisingly little is known about letter spacing. The recommendations of the British Dyslexia Association include optimizing the size and type of font, page layout, headings, type of paper, and line spacing but not letter spacing.1

The collaborative effort was a deliberate attempt to compare two languages that have different types of spelling-to-sound translation. Italian has completely regular spelling rules (a transparent orthography), meaning there are no exception words. Each combination of printed letters is always pronounced in a consistent way. By contrast, written French is orthographically opaque, meaning that pesky irregular spellings can trip you up. This is true in English as well: compare the pronunciation of the word "pint" to "hint", "mint", and "lint". The /i/ sound wins out over the /ī/ sound, in terms of regularity.

In the study, 34 Italian and 40 French children with dyslexia were tested on two separate occasions at least two weeks apart. They read 24 short sentences, which were written in standard text in one session and highly spaced text in the other. The order of sessions was counterbalanced to control for practice effects,2 with half assigned to read the spaced text at T1 and the other half at T2. Reading accuracy (number of errors) and reading speed (number of syllables per second) both interacted with test session (p<.0001), indicating a drastic improvement with the highly spaced text. This was true for both the Italian and the French children with dyslexia.


Fig. 2 (Zorzi et al., 2012). (C) Reading accuracy (number of errors) in the normal and spaced text conditions for Italian dyslexics, French dyslexics, and a younger group of Italian control children matched for reading level (RL) to the Italian dyslexic sample.


It came as quite a surprise to me that no one had demonstrated this letter spacing effect before. But then again, I'm not familiar with the literature on developmental reading disorders, so perhaps Professor Dorothy Bishop or Livia Blackburne can provide a more critical take on an [apparently] amazing finding.

Finally, the authors have developed DYS, a free iPhone/iPad application. You can test out the spacing effect for yourself and submit your results anonymously, in the name of science!

For more information, see the WSJ Health Blog.


Footnotes

1 Also note that bold is preferable to italic, as the latter induces crowding.

2 A control experiment in a different group of children presented the normal and spaced text within a single session, again in counterbalanced order. The critical difference here was that different sentences were used in each condition, so practice effects wouldn't be an issue.


References

Martelli M, Di Filippo G, Spinelli D, Zoccolotti P (2009). Crowding, reading, and developmental dyslexia. J Vis 9: 14, 1–18.

Marco Zorzi, Chiara Barbiero, Andrea Facoetti, Isabella Lonciari, Marco Carrozzi, Marcella Montico, Laura Bravar, Florence George, Catherine Pech-Georgel, and Johannes C. Ziegler (2012). Extra-large letter spacing improves reading in dyslexia. PNAS. doi:10.1073/pnas.1205566109.

maandag 2 juli 2012

Perceptual Grouping without Awareness: Superiority of Kanizsa Triangle in Breaking Interocular Suppression


 
Perceptual Grouping without Awareness: Superiority of Kanizsa Triangle in Breaking Interocular Suppression
Published on PLoS ONE Alerts: Neuroscience | shared via feedly

by Lan Wang, Xuchu Weng, Sheng He

Much information could be processed unconsciously. However, there is no direct evidence on whether perceptual grouping could occur without awareness. To answer this question, we investigated whether a Kanizsa triangle (an example of perceptual grouping) is processed differently from stimuli with the same local components but are ungrouped or weakly grouped. Specifically, using a suppression time paradigm we tested whether a Kanizsa triangle would emerge from interocular continuous flash suppression sooner than control stimuli. Results show a significant advantage of the Kanizsa triangle: the Kanizsa triangle emerged from suppression noise significantly faster than the control stimulus with the local Pacmen randomly rotated (t(9) = −2.78, p = 0.02); and also faster than the control stimulus with all Pacmen rotated 180° (t(11) = −3.20, p<0.01). Additional results demonstrated that the advantage of the grouped Kanizsa triangle could not be accounted for by the faster detection speed at the conscious level for the Kanizsa figures on a dynamic noise background. Our results indicate that certain properties supporting perceptual grouping could be processed in the absence of awareness.